wE
"} IrQl

User manual- October 12th 2020

Wilianea

Starting

Thanks to have choose miranda, the universal simulation software.

This manual gives an outline of the use of miranda, for more detailed explanations on certain points,
consult the YouTube channel miranda:

https://www.youtube.com/watch?v=6g-dHlJrTPO&Ilist=PLHIYmTo8fUg5V4-r3tcjzq-2wqwhRtZlo

You can use miranda from a WebGL compatible browser or install an executable on Windows. For this,
go to the website:

miranda.software

And choose "Connection" ...

| LICeln)ole)

Prices FAQ Connection

iversal software for
obots simulation

Wilianea

From the home screen ...

Choose the language if necessary, by clicking at the bottom of the screen, then click in the middle of the
screen ...

Enter yourid...
Enter your password...
or Enter a connection code...

Choose the display quality, enter your username and password (sent by your supplier), then click on
"Login" ...

By moving the mouse over the different elements an explanatory text is displayed ...

Retimiakhe

ogin pag=

Scenes

The scene editor ...

3d navigation

With the mouse:

-Turn the wheel = zoom,

-Right button pressed + move = rotation,
-Wheel pressed + move = translation.

With a touch screen:

-Two fingers = rotation,
-Three fingers = translation.

Keyboard:

- Alt + arrow keys = move.

Wilianea

At the bottom left is the library of objects categorized. To add an object to the scene, choose it in this
library.

Wikianea

When an object is selected, its properties are displayed at the top left in the form of tabs:

Reminder: by moving the mouse over the different elements, an explanatory text is displayed.

A window...

.

... is also displayed near the selected objects and allows you to carry out common operations: deletion,
zoom, duplication, ...

This window also gives access to the program associated with each object.

For example, to associate and edit a program in Scratch, click on:

then on

Events
@ Control y
@ Operators C
_space)
@ Debug
® mBot G:l

@ Variables

-

The position, rotation or scale of the selected objects can also be modified with the "Gizmo" appearing
next to the objects ...

... by grabbing the arrows, the object moves, grabbing the circles, the object rotates, grabbing the white
square in the center of the Gizmo, the size is changed.

The Gizmo icon ...

Wilianea

... at the top of the miranda window allows you to change the type of Gizmo, going for example from a
universal Gizmo type to a Gizmo allowing only the size change.

The simulation can be started, stopped and reset using these icons:

In simulation mode, if a system is selected, the "Properties, 1/0s" tab ...

... provides access to dynamic visualization of system elements (motors, sensors, ...). By clicking on ...

... it is possible to manually control the output elements (manually activate the motors for example).

Scenes can be saved and reloaded ...

Search...

i :Codey 1
:Dash 1

Y :Edison 1
‘Lego 1

Y :mBot 1
:Ozaobot 1

" :parking_issue

7 [Filename] i

... backups are associated with your customer account in the cloud.

Share a scene

The scene sharing...

... permits to an user to share a scene (Eg. a challenge) with another

miranda user.

3

To send a sharing to another user...

Select a scene to share
Search...

:mon défi

all robots
bugscratchfr
codey rocky
codey2
custom1

DashAndDot

PN

[Filename] [All Files (.*) "]

| Select || Cancel |

Sharing code: PPD2K056M1D86

sendiy emat

A same code can be shared with several users.

Enter the sharing code

To receive a sharing...

Player mode

.............

Wilianea

This mode is typically intended for using challenges without the possibility of modifying them.

Example of challenge ...

21.3ms (47 fps). froo haap=26, ncolect=144

- gio=® PaE

® control

® pertrs

When | space key is pressed
® Debug.
@t When space key s released
 varaties

Wilianea

Challenges

For a scene to appear as a challenge usable in player mode, its name must start with the character

Miranda allows you to use the challenges provided with the software and also to create your own
challenges.

The "manager" object ...

Manager | Start | Finishing line |

... from the library is the central part of a challenge. This programmable object in Scratch or Python
allows you to define the progress of the challenge. The "Finish Line" object can also be used to check for
the presence of an object in a certain location. A challenge can consist of several stages.

List of programming elements of the "Manager" object ...

Number of started systems in

Stop systems in
Select systems in

Hide systems in

Number of systems in that had a collision with
Set steps number to (D

set level @ as terminated

Define the challenge as lost and display @

Example of use of the Manager object programmed in Python (challenge 1 mBot, for this challenge, the
object mbot.mbot # 1 is the green robot programmed by the user of the challenge, mbot.mbot # 2 is the
one computer-controlled red robot):

') Iselect the green robot

L'} stop all robots

i) Wait that the user starts the green robot

Imbot))
@ ice xplanations |
@) Chllenge has 3 |
:
@) oritor cochsecond_|

he red robot has reached the finish line for step #1?

he green robot has reached finish line for step#1 ?

Same with Scratch :

When starts up
Select systems in _ mbot.mbot#1

Stop systemsin mbot

Wait until Number of started systems in - mbot.mbot#1 { 0]
Start systems in - mbot

Hide systems in _explanation

set steps number to @ER

If Number of systemsin mbot.mbot#2 that had a collision with | manager.line#2 =~ @ then
Define the challenge as lost and disp|
R

If Mumber of systemsin = mbot.mbot#1 that had a collision with = manager.line#1 - @ then
set level @I as terminated

wait @ seconds
- @ _then

Define the challenge as lost and display @)

psaminrooc] I

If Number of systemsin mbot.mbot#1 that had a collision with - manager line#3 @ then
Setlevel as terminated
I Number of systemsin mbot.mbot#2 that had a collision with - manager.ine#& @D then
Stop systemsin _mbot

If Number of systemsin mbotmbet#1 that had a collision with manager line#5 €D then

Set level @E] as terminated

Systems editor

The systems editor ...

5
4

—J

... allows you to create your own systems (robots for example) usable in simulation scenes.

Wilianea

Systems are created by defining the physical structure, for example the body of a robot and then the
wheels.

Other elements can also be added: sensors, leds.
Personalized geometries can finally be added as decorations to finalize the visual aspect of the robot.
Finally, the Scratch blocs associated to a device can be customized.

Some of the robots in the miranda library (Edison and Thymio for example) were created with the
system editor and can be reopened in the editor to observe their internal structure and serve as a model
for your own creations.

Items that can be used for the device creation are arranged in categories...

Basic v

Cylinder

... one click on an item add it as child of the selected item.
Categories are as follow:

- Basic: body of a device and basic shapes,

- Custom geometries: to be used to import your own geometries from a “.glb” 3d file,
- Sensors: the different sensors,

- Leds: lighting items,

- Links: physic links,

- Sounds: for emitting a sound,

- Lights: for emitting a light,

- Other: all that do not belong to the other categories.

Wilianea

The following illustrates the creation of a device.

The different steps are only an example, some of them are optional and to be used only according to
your needs.

Creation of a minimalist robot...

Basic

Wilianea

—‘ body.cube #1

Wilianea

miranda

———

Transform

Position (m)

X [0.0000 "} Y [oos3s] 2 [0.0000
Rotation (degrees)

X { 0.0000] ¥ [0.0000 1 2 [0.0000)
Scale

X [1.0000 } ¥ [1.0000] 2 [1.0000)
Size (m)

X | 0.1000 Y | 0.1000 Z | 0.1000

Visibility

Visible

Color, vignette

miranda

Visibility

Transform

-0.0389

-0.0660

] ¥ [0.0000

-0.0366
X [0.0000

J
Scale
X { 1.0000] ¥ [1.0000 1 Z [1.0000)
Size (m)

0.0100 Y | 0.0500 Z | 0.0500

Wheel

] [0.0000

Use motor

Maximum speed (degrees/s)
Torque (N)

2.0000

Color

miranda

Transform

-0.0660 -0.0389

-0.0366
X [0.0000

Scale]
X { 1.0000] ¥ [1.0000 1 Z [1.0000)

Size (m)
X | 0.0100 Y | 0.0500 Z | 0.0500

Wheel

] ¥ [0.0000] [0.0000

Use motor

Maximum speed (degrees/s)
Torque (N)
Color

Duplicate the selected
item

EERE

miranda

Name

Visibility

Transform

Position (m)
X { 0.0669
Rotation (degrees)

]

] ¥ [0.0000] 2 0.0000]

1Y { 0.0389 12 { 00386

Scale
X { 1.0000] ¥ [1.0000 1 Z [1.0000)
Size (m)

X | 0.0100 Y | 0.0500 Z | 0.0500

Wheel

Use motor

Maximum speed (degrees/s)
Torque (N)

2.0000

Color

miranda

Name

Visibility

Visible

Transform

Rotation (degrees)
X [0.0000)
Scale

X { 1.0000] ¥ [1.0000 1 Z [1.0000)
Size (m)

X | 00100 Y | 0.0500 Z | 0.0500

] ¥ [0.0000] 2 [0.0000

Maximum speed (degrees/s)

Torque (N)
Color

... by default, the wheels are motorized, so the system is functional and the robot moves forward.

Let’s enrich our model, add a sphere as a third point of support ...

miranda

>

oo

Name

Visibility

Visible

Transform

Position (m)
X { 0.0000 | ¥ [0.0000 1z [01559
Rotation (degrees)

X [00000 | ¥ (00000 12 [00000

Scale
X { 0.2000 | Y [02000 | Z | 02000
ZeTm)

X | 0.0200 Y | 00200 Z | 0.0200

Mass (kg)
1.0000

Color, advanced properties

Color
Rigid joint .
(J
Mass scale
Parent mass scale
Dynamic friction >=0
Static friction >=0
Bounciness >=0 <=1
Friction combine mode (0=average, 1=multiply, 2=mini, 3=maxi)|
(2000)

miranda

Name

Visibility

Visible

Transform

Position (m)
X { 0.0000
Rotation (degrees)

) ¥ {00554 12 00581

X [0.0000 } ¥ [0.0000 12 [0.0000
Scale
X { 0.2000) ¥ [02000 12 [02000

Size (m)

X | 0.0200 Y| 00200 Z | 0.0200

Color, advanced properties

Color

Rigid joint
Mass scale
1.0000
Parent mass scale

1.0000
Dynamic friction >=0
0.1000
Static friction >=0
0.1000
Bounciness >=0 <=1
0.0000
Friction combine mode (0=average, 1=multiply, 2=mini, 3=maxi)|
2.0000

|

... By default, the items automatically have a physical joint with their parent.

Let's see how to use our system in the scenes editor. To begin with, let's name the items so that we can
identify them when it comes to driving them ...

miranda

right wheel|

Visibility

Transform

Rotation (degrees)
X [0.0000)
Scale

X { 1.0000] ¥ [1.0000 1 Z [1.0000)

Size (m)
X | 0.0100 Y | 0.0500 Z | 0.0500

] ¥ [0.0000] [0.0000

Mass (kg)

1.0000

Wheel

Use motor

Maximum speed (degrees/s)
Torque (N)

2.0000

Color

... then let’s save our device...

Search...

ah

arduino
arduino uno
Beetle1
Beetle111
Beetle112

Beetle113

-~ al___ a4 4 a

my first robot|

Select Cancel

... now from the scenes editor...

Wilianea

my first robot

maze mbotavectrace = monmbot my first robot

... the functional items, here only the wheels, are usable from the Scratch or Python programing...

miranda

" Events

 Control

@ Operators

oo Set m)

@ New system

@ Variables C_/]
miranda

#Python script for New system

newsystem.leftwheel.setpower(<power (from -100 to 168)>)
newsystem. rightwheel.setpower (<power (from -108 to 100)>)

l:l.q:ort newsystem

oNOG A WN =

... Let's go back to complete our model by adding a distance sensor...

Wilianea

miranda

—| —— 4]- EEEE—
S Transform
o2)

Mass (Kg)

1.0000

Visibility

Visible

Color, vignette

Proximity

... let's say we wanted to get a distance sensor operating at a maximum distance of 30 cm in front of the
robot ...

—{ B body.cube #1

sensor.distancy
#5

Transform

Position (m)

X [0.0000] ¥ [0.0000] 2 [00553) |
Rotation (degrees),
X [0.0000 1) ¥ [2700000] ¥ [0.0000 J
Scale |
X [3.0000] ¥ [1.0000] 2 [1.0000] |

X [03000 JI¥ [00100] 200100) |

[

... The "Visible" checkbox allows you to hide the geometry associated with the detection zone. Scratch
blocks and "default" Python functions are automatically accessible in programming mode ...

TroLwTihiLy

 Control

@ Operators

Set mi)
A &

® New system E_]

— \ (100

Distance sensor (value between 0 and 1)

#Python script for New system

newsystem.leftwheel.setpower(<power (from -188 to 188)=)
newsystem.rightwheel.setpower(<power (from -186 to 168)=)
newsystem.distancesensor()

import newsystem

L s T L L I]

... Let's continue the customization of our system by defining the category in which our robot must

appear as well as its name and a personalized icon...

[My First Robot

| My Robots|

Wilianea

ﬁ | = = f = | Sans titre - Paint

Iﬂﬂ Accueil Affichage

Presse- Image Outils
papiers = = -

v

Pinceaux

-

g

Formes

-

Taille

4

Couleurs

-

Modifier avec
Paint 3D

| 1m%@='=® -+

Wikianea

... after saving, your robot will appear like this in the scene editor ...

... Let's add custom geometry...

Wilianea

Geometry

... The format of the associated 3d file is “.glb”, these files can be created with Paint 3d (Windows 10) or
Blender...

Wilianea

Sans titre* - Paint 3D

|

I\ Sélectionner 12[Rogner 33 Sélection magique ey o — -+ Formes 3D

& Ouvre la bibliothéque 3D

Graffiti 3D

28 8
®00 44
BBORe

Modéles 3D

BRB® Y &

4 Ajouter une couleur

... save the .glb file, then open it from miranda...

Geometry

Load geometry

o .

Position (m)

1X| 0.0000 Xl 1

|Rotation (degrees)

X|o00000 | ¥ 00000

Scale

X 100000 | Y| 10.0000
Size (m)

X 01920 Y | 0.1538

miranda

... The physical shapes can be hidden so that only custom geometries appear...

miranda

System

My First Robot

Transform

Position (m)

X | 0.0000 Y | 0.0852 Z | 0.0000
Rotation (degrees)

X [0.0000 | ¥ 00000]2 00000]
Scale

X { 1.0000 | ¥ [1.0000 | 2 1.0000)
Size (m)

X | 0.1000 Y | 0.1000 Z | 0.1000

Mass (Kg)

1.0000

Visibility

[_

Color, vignette

Color

Load vignette

... When this item is added to a system, the default Scratch blocks are entirely replaced by the blocks
defined in the following way...

... this part is the most complex and requires writing a few lines in Python language to define the
appearance of the blocks as well as their internal workings. The first Python function to use allows you
to create a category, here is the syntax ...

adb.addcat(<category name>,<color>)
... and an example ...

catid=adb.addcat("my first robot", "ff8080")

... will display the category in the Scratch editor like this ...

my first robot

... If several categories must be created, several calls to this function must be made. The function returns
an identifier that will be used when adding Scratchs blocks to the category. There are several syntaxes
for adding blocks depending on the type of block to add. For a block of action ...

adb.addregularblk(<category id>,<block perimeter color>,<block background color>)
... A block returning a numeric or text value...

adb.addvalueblk(<category id>,<block perimeter color>,<block background color>)
... A block returning a boolean value...

adb.addbvalueblk(<category id>,<block perimeter color>,<block background color>)

... These functions return a block identifier which will be used by the functions for creating block
elements. For a text ...

adb.addstring(<block id>,<text>)

... for a text input or a numerical value input ...
adb.addvalue(<block id >,<default value>)

... for a boolean value...

adb.addbvalue(<block id >)

... for a choice list...

40

adb.addoption(<block id>,<options separated with ‘;’>,<default value>)
... some samples ...

id=adb.addregularblk(catid,"000000","ff8000")
adb.addstring(id,"set left wheel at power ")
adb.addvalue(id,"100")

adb.addstring(id," % , set right wheel at power ")
adb.addvalue(id,"100")

adb.addstring(id," % ")

set left wheel at power % , SH

id=adb.addregularblk(catid,"000000","c000c0")
adb.addstring(id,"turn on the light ")
adb.addoption(id,"all;left;right","all")
adb.addstring(id," with: red ")
adb.addvalue(id,"0")

adb.addstring(id," green ")
adb.addvalue(id,"0")

adb.addstring(id," blue ")

adb.addvalue(id,"0")

turn on thelight all with: red e

... As said previously, the python script defines both the blocks and their operation. A variable named
"mode" is documented with a value determining whether the code must define the blocks (mode = 0) or
if the code must manage the internal operation of each block (block = 1 for the operation of the first
block, block = 2 for the second block, etc...). The blocks are numbered in the order of their definition: the
first defined block is number 1, the second is number 2, etc. The Python code will be structured by if...

tests on the mode variable. If mode = 0 then define the blocks, if mode = 1 then manage the execution

of the first block, etc. Python code should use a function named "adb.readvar (" mode ")" to read the

value of the "mode" variable. Let's come back to our example and create a block allowing to control the

two motors of our robot ...

‘lf '—\F Y — 1
Xﬁ o)

{

lm R EY

_,-vf

block definition

if adb.readvar("mode")==0:
idcat=adb.addcat("My first robot","ff8080")
id=adb.addregularblk(idcat,"000000","ff8000")
adb.addstring(id,"set left wheel at power ")
adb.addvalue(id,"100")
adb.addstring(id," %, set right wheel at power ")
adb.addvalue(id,"100")
adb.addstring(id,"%")

block number 1 operation

if adb.readvar("mode")==1:
import myfirstrobot
myfirstrobot .leftwheel.setpower(adb.readvar("arg2"))
myfirstrobot .rightwheel.setpower(adb.readvar("arg4"))

... Some explanations on the definition of the operation of the block are necessary. "Import
myfirstrobot" is necessary to be able to call the functions of our robot. The usable functions, depending
on the elements used to create a device, are automatically listed in the comments at the top of the
Python script ...

myfirstrobot.leftwheel.setpower(<puissance (de -100 a 100)=)
myfirstrobot.rightwheel.setpower(<puissance (de -100 a 100)>)
myfirstrobot.distancesensor()

myfirstrobot.leftwheel. setpower(<power (from -100 to 100)>)
myfirstrobot.rightwheel.setpower(<power (from -100 to 100)=)
myfirstrobot.distancesensor()

... Another explanation is needed on the method used to reference a value associated with a block. Our
block has two values ..

set left wheel at power O , SH

Wilianea

... The position of the values is determined by their order of creation on the block...

et |e eel at power EINYD % , s¢€

... The “arg <position>" variables are used to refer to the variables of the block in relation to their
position. For our example, adb.readvar ("arg2") returns the value for the left wheel and adb.readvar
("arg4") returns the value for the left wheel. It remains to pass these values to the functions

I_ “

corresponding to each wheel: “myfirstrobot.leftwheel.setpower” and
“myfirstrobot.rightwheel.setpower”. Let's continue our example by defining a block that will return the

distance measured by the distance sensor in centimeters ...

block definition

if adb.readvar("mode")==0:
idcat=adb.addcat("My first robot","ff8080")
id=adb.addregularblk(idcat,"000000","ff8000")
adb.addstring(id,"set left wheel at power ")
adb.addvalue(id,"100")
adb.addstring(id," %, set right wheel at power ")
adb.addvalue(id,"100")
adb.addstring(id,"%")
id=adb.addvalueblk(idcat,"000000","c0c000")
adb.addstring(id,"ultrasonic distance sensor (cm)")

block number 1 operation

if adb.readvar("mode")==1:
import myfirstrobot
myfirstrobot .leftwheel.setpower(adb.readvar("arg2"))
myfirstrobot .rightwheel.setpower(adb.readvar("arga"))

block number 2 operation
if adb.readvar("mode")==2:
import myfirstrobot
adb.writevar("result" , myfirstrobot.distancesensor()*30)

43

... Some additional explanations. The "distance sensor" block returns a value. This value return is
handled by writing from the Python Script a variable named "result" using the "adb_writevar" function.
The result is multiplied by 30, in fact, the “, myfirstrobot.distancesensor()” function returns a value
between 0 and 1 depending on the distance measured and we have defined a detection zone of 30cm
long. We are done with this example, after saving, the programming interface of our robot in the Scratch
editor looks like this ...

. Events

 Contral
@ Operators

@ pebue set left wheel at power (@ISO %, set right wheel at powe

@ My first robot n "
ultrasonic distance sensor (cm)

@ Variables

Users manager

The "school" versions of miranda allow you to manage users, generally associated with students or
groups of students.

Access to the list of users ...

£

== Crr—

1234

Import Delate ail Export

... the bottom line lets you add users.
The « filter » area...

—= BRSOBKPKP1KALOS6A2CE35 162

... lets you display only the users for which the name includes the filter. After modifying, click on the «
Refresh » button.

For each user, the challenges used appear with the level of advancement. The « Open » button lets open
the last program created for each challenge.

The code displayed on the top line allows your users to log into miranda ...

B8RS0BKPKP1K4LOSEAZCE35162AEMKOGEPPJIK

Logiin

LRIV 4545Hhu|

The code can be passed when launching miranda. This code is always the same for a same miranda id

(customer code).

For the Web browser version:

<url> ?<CODE>

Example:
http://iraiz.Com/mir?8RS@6KPKP1K4LOSGA2CE35162AEZKOG6PPJIK898BQK2305869EA211
For the exe version:

<path to miranda exe> CODE=<CODE>

Example:
"C:\program files\miranda\miranda.exe" CODE=8RS06KPKP1K4LOS6A2CE35162AEMKOG6PPJIK8Z8BQ32J058GIEA3I1

Users list can be imported (miranda exe version only) ...

... from a text file.
The file may contain on, each line, an username, possibly followed by a password.
Files examples:

Elisa
John

Elisa, 1234
John,9856

Elisa ;1234
John ;9856

If the password is not specified, then a random password is generated.
The displayed users can also be exported.

The users list can be deleted.

Users groups
Each user name may contain a header following by « : » defining the belonging to a group.

Example...

irai:sm

... user « sm » belonging to « irai » group.

When login, users have to enter the full name. For instance:
irai:sm

Access to groups setup...

£

v v

Nam Scones name(s) Sconos adior EErr

Refresh

47

... for each group is defined : its name, a list of visible scenes, the possibility to use or not the scene
editor and the device editor.

The list of visible scenes may contain one or more beginning of scene name (use « ; » as delimiter).

If this list is void, the default mode is apply : only the scenes with name beginning with « : » are visible.

48

